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Abstract 
 

Cloud phase identification from active remote sensors is challenging, especially in the 

temperature range from 0 to -40 °C, where both liquid and ice hydrometeor phases are 

sustainable. Millimeter wavelength cloud radars (MMCR) are able to penetrate and detect 

multiple cloud layers. However in mixed-phase conditions, ice crystals dominate the 

radar signal, rendering the detection of liquid droplets from radar observables more 

difficult.  The technique proposed here overcomes this fundamental limitation by using 

morphological features in MMCR Doppler spectra to detect supercooled liquid droplets 

in the radar sampling volume in the presence of ice particles. High lidar backscatter and 

near-zero lidar depolarization measurements - good indicators of the presence of liquid 

droplets – from the Mixed-Phase Arctic Clouds Experiment (MPACE) conducted in 

Barrow, Alaska, are used to evaluate the potential of the technique to detect mixed-phase 

conditions. Due to the ability of MMCRs to penetrate multiple liquid layers, this radar-

based technique does not suffer from the extinction limitations of lidars and is thus able 

to expand cloud phase identification methods to cloud regions beyond where lidars can 

penetrate, providing output at the native radar resolution. The technique is applicable to 

all profiling radars that have sufficient sensitivity to observe the small amount of liquid in 

mixed-phase clouds. 

 



1. INTRODUCTION 
 
 

The life cycles and radiative properties of clouds are highly sensitive to the phase of their 

hydrometeors (i.e., liquid or ice). Knowledge of cloud phase is essential for specifying 

the optical properties of clouds. Current cloud parameterizations that partition water into 

liquid and ice based on temperature are characterized by large uncertainties (Curry et al., 

1986; Hobbs and Rangno, 1985; Intrieri et al., 2002). These uncertainties are particularly 

important in high geographical latitudes and temperature ranges where both liquid 

droplets and ice crystals can coexist (mixed-phase cloud). Furthermore, the presence of 

both ice and liquid affects the macroscopic properties of clouds including their propensity 

to precipitate.  

 

Mixed-phase clouds have a major presence in global cloud cover. Cloud type 

classifications made at the ARM North Slope of Alaska (NSA) observation site over the 

past six years and similar results from the year-long Surface Heat Budget of the Arctic 

(SHEBA) project have shown that mixed-phase clouds occur approximately 45% of the 

time in the Arctic (Shupe et al. 2006) with maximum occurrence during the spring and 

fall transition seasons. These Arctic mixed-phase clouds are typically stratiform in nature, 

occur at the top of the inversion-capped boundary layer, often contain little liquid water, 

and are remarkably persistent (sometimes lasting for days to weeks). A preliminary 

perusal of radar measurements from the ARM Southern Great Plains (SGP) observation 

site during the winter of 2003/2004 has suggested that mixed-phase clouds occurred on 

about 40% of the days during the months of November through March. These clouds 

were most frequently observed above the boundary layer and typically lasted for a few 



hours. In spite of the macroscopic differences between the mixed-phase clouds at these 

two sites, they are both important for a variety of reasons. In the Arctic, the liquid water 

found in mixed-phase clouds, even in the cold Polar winter, has been shown to play the 

dominant role in cloud-surface radiative interactions (Shupe and Intrieri 2004), and can 

have profound impacts on the start and duration of the melt season, the total extent and 

thickness of sea-ice, and indirectly on the annual evolution of the surface albedo (e.g., 

Zhang et al. 1996, Maykut and Untersteiner 1971). In the mid-latitudes, in addition to 

radiative implications, mixed-phase clouds also have great importance with respect to 

aircraft icing hazards (Cober et al. 2001). 

 

Despite their importance, mixed-phase clouds are severely understudied compared to 

arguably simpler single-phase clouds.  In-situ measurements in mixed-phase clouds are 

hindered due to aircraft icing hazards, difficulties distinguishing hydrometeor phase, and 

discrepancies in methods for deriving physical quantities (Wendisch et al. 1996, Lawson 

et al. 2001). Satellite-based retrievals of cloud phase in high latitudes are often hindered 

by the highly reflecting ice-covered ground and persistent temperature inversions.  

 

In this study, we use measurements from the US Department of Energy (DOE) 

Atmospheric Radiation Measurement (ARM) program Mixed-Phase Arctic Clouds 

Experiment (MPACE, Verlinde et al., 2007) conducted in the fall of 2004 at the North 

Slope of Alaska (NSA) site (e.g., Ackerman and Stokes, 2003). During the experiment, 

collocated measurements from the University of Wisconsin High Spectral Resolution 

Lidar (HSRL, Eloranta, 2005) and the ARM program millimeter-wavelength cloud radar 

(MMCR, Moran et al., 1998) were collected. Prior to MPACE, the NSA MMCR receiver 



was upgraded (Kollias et al., 2007) and continuous recording of the MMCR Doppler 

spectra was available. The MMCR Doppler spectrum reports the full distribution of the 

return echo over a range of Doppler velocities and thus provides detailed information 

about cloud microphysics and dynamics (e.g., Kollias et al., 2002; Luke et al., 2007).  

Before the upgrade, only the first three moments of the Doppler spectrum were recorded, 

namely the zeroth moment or radar reflectivity, the first moment or mean Doppler 

velocity and the second moment or Doppler spectrum width. These three moments of the 

Doppler spectrum are sufficient to describe the spectrum shape if it does not deviate 

significantly from the Gaussian distribution (moment approach). In mixed-phase 

conditions, the moments are dominated by the ice crystals' characteristics and the 

detection of supercooled liquid is very difficult.    

 

Our objective is to demonstrate that we can overcome the inability of the radar moment 

approach to detect the presence of supercooled liquid in mixed-phase conditions through 

careful analysis of recorded Doppler spectra from the vertically pointing radars of the 

ARM program (spectral approach).  Our technique looks beyond the traditional moment 

approach in the analysis of cloud radar observations and attempts to retrieve 

microphysical properties from the typically skewed, often multi-modal, and sometimes 

very complex morphologies of cloud radar Doppler spectra (Kollias et al., 2007a). These 

distortions result from the interplay of cloud dynamics, microphysics and cloud phase. 

We decompose the Doppler spectra into several bands of differing resolution each 

localized in Doppler velocity using continuous wavelet transforms and analyze the 

resulting patterns with a neural network.  

 



Since we do not have direct measurements of the spatial distribution of liquid in the 

atmospheric column, we use the next best available proxy, collocated measurements of 

lidar backscatter (β) and circular depolarization (CDR) to train and validate our retrieval 

algorithm. Additional validation (but not algorithm training) is provided by integrated 

liquid water path measurements from a collocated microwave radiometer. First, we 

demonstrate that the radar-based retrieval technique accurately predicts the presence of 

supercooled liquid in mixed-phase clouds using the radar Doppler spectra as the only 

input. Second, we demonstrate that the technique is capable of predicting with reasonable 

success the lidar signals (β and CDR) from the Doppler spectra. 

 

2. BACKGROUND 
 
 
 

From the ground, the retrieval of mixed-phase cloud properties has been the subject of 

extensive research over the past 20 years using polarization lidars (e.g., Sassen et al. 

1990), dual radar wavelengths (e.g., Gosset and Sauvageot 1992; Sekelsky and McIntosh, 

1996), and recently, radar Doppler spectra (Shupe et al. 2004, 2008). Millimeter-

wavelength radars have substantially improved our ability to observe non-precipitating 

clouds (Kollias et al., 2007b) due to their superior sensitivity to non-precipitating cloud 

layers and their ability to penetrate several cloud layers.  

 

In clouds, lidar backscatter β (sr-1m-1) is proportional to the square of the diameter (D) of 

the hydrometeors (~D2). Depolarization of lidar backscatter (circular depolarization ratio, 

CDR) indicates that the scattering particles are non-spherical. In typical mixed-phase 

conditions, liquid occurs as a high concentration of small spherical droplets while ice is 



distributed in relatively lower concentrations of large, non-spherical ice crystals. As a 

result, the lidar backscatter (~D2) signal is dominated by the high concentration liquid 

droplets; areas with high intensity lidar backscatter and near-zero lidar depolarization 

signals indicate the presence of small liquid droplets. On the contrary, the radar 

backscatter is proportional to the sixth power of the hydrometeor diameter (σ~D6). Thus 

in typical mixed-phase conditions, the low concentration large ice crystals dominate the 

radar backscatter signal which therefore offers little information about the spatial 

distribution of liquid in the atmospheric column. This is true if only the Doppler moments 

are available (moments approach). In general, clouds composed of only small liquid 

droplets do not have a reflectivity higher than -17 dBZ (Frisch et al., 1995). Thus, in 

subzero temperatures, higher reflectivities suggest the presence of larger particles such as 

ice crystals. When the conditions of high radar reflectivity (dBZ > -17), high lidar 

backscatter (β > 5·10-5 sr-1m-1) and near-zero lidar circular depolarization signal (CDR < 

0.1) are observed simultaneously, this implies the presence of mixed-phase conditions. 

Such synergistic cloud phase retrieval schemes that use collocated radar and lidar profiles 

have been used in the past (e.g., Shupe, 2007). However, synergistic radar/lidar 

techniques are limited to the maximum height the lidar penetrates before complete signal 

extinction.   

 

In mixed-phase conditions, at least two particle size distributions (PSD) with different 

phase, terminal velocity and backscattering characteristics are present in the radar 

sampling volume. The terminal velocity of cloud droplets is negligible compared to 

typical vertical motions encountered in clouds, so that where ice crystals are not present 

the observed mean Doppler velocity is a very good indication of the vertical air motion 



(e.g., Kollias et al., 2001, Shupe et al., 2004). In contrast, ice particles have larger and 

broader fall velocity distributions and account for most of the radar backscattered energy. 

If sufficient separation between liquid and ice fall velocity distributions exists, the spectra 

may exhibit a pronounced bi-modality (Fig. 1a) that can be used to retrieve the vertical 

air motion and liquid and ice microphysics (e.g., liquid water content, ice water content 

and ice effective radius, Shupe, et. al., 2004). For the MMCR, negative Doppler velocity 

indicates motion away from the radar (upward). If there is not sufficient separation 

between liquid and ice fall velocity distributions, then often a skewed mono-modal 

Doppler spectrum is observed (Fig. 1b). Such asymmetry features in the Doppler 

spectrum are not captured well using the traditional radar Doppler moments approach and 

can be a source of information about the presence of mixed-phase conditions.   

 

Cloud turbulence, however, can have an overwhelming effect and smear (smooth) such 

asymmetries induced by cloud microphysics. Recently, the ARM MMCR’s deployed a 

new optimum sampling strategy, along with continuous recording of the Doppler spectra, 

which has been specifically designed to minimize the effects of turbulence on the 

Doppler spectra (Kollias et al., 2007a). These new optimum MMCR sampling settings 

were operational at the NSA MMCR during the MPACE experiment.  

 

3. Extraction of MMCR Doppler Spectra Morphological Features  

 

Starting with the MMCR Doppler spectra, we remove the noise, eliminate artifacts (e.g., 

aliasing, spectral images) and identify the significant signal detections from 

hydrometeors (Kollias et al., 2007a). Then, we apply a second-order Gaussian (Marr) 



continuous wavelet transform (CWT) to the spectra  (Figs. 2 and 3).  The application of 

the Marr CWT to a Doppler spectrum decomposes the spectral power into a two-

dimensional array providing feature localization in both Doppler velocity and width 

(scale). To demonstrate the ability of the Marr CWT to detect and localize the 

components of a sum of Gaussians, we applied it to synthetically generated Doppler 

spectra (Fig. 2). Fig. 2a contains a Gaussian synthetic Doppler spectrum (i.e. unimodal 

particle size distribution). Fig. 2b contains a synthetic Doppler spectrum generated from a 

pair of identical Gaussian distributions (i.e. bimodal particle distribution of equal radar 

reflectivity) resulting in a non-skewed spectrum. Fig. 2c contains a Gaussian pair of 

unequal magnitude (i.e., liquid and ice particle size distributions), resulting in a skewed 

spectrum resembling many real spectra. The radar moment approach results in very 

similar Doppler moments for all three spectra and thus, the subtle differences in the 

shapes of the three synthetic spectra may not be captured. The operation of the Marr 

wavelet at a scale appropriate to detect the fundamental Gaussian features on the 

synthetic spectra is shown in Fig2d-f. The coefficients are different in all three cases, 

indicating the ability of the Marr wavelet to detect the subtle differences in the shapes of 

the synthetic Doppler spectra. The wavelet scale appropriate to detect the different 

particle modes is not known in advance. Thus, we apply the Marr mother wavelet to each 

recorded MMCR Doppler spectrum at several different scales and use the output as input 

to a neural network to detect the presence of supercooled liquid in mixed-phase clouds.  

 

Fig. 3 shows the complete set of input parameters to the neural network derived from a 

typical mixed-phase Doppler spectrum. The observed Doppler spectrum (Fig. 3b) 

presents evidence of skewness toward the low fall velocity edge of the spectrum due to 



the presence of liquid and ice particles in the radar sampling volume. The Marr CWT is 

applied to the observed Doppler spectrum at 6 different scales (Fig. 3a) and the resulting 

coefficients (Fig. 3c) are part of the input to the neural network. The radar reflectivity, 

mean Doppler velocity, spectrum width, skewness, kurtosis, and the left and right slope 

of the Doppler spectrum significant peak complement the list of input parameters. 

Parameters such as the radar range (altitude) and temperature are not inputs to the 

algorithm.  

 

The neural network learns the functional relationship between the input parameters and 

the presence of supercooled liquid during MPACE by learning to predict the HSRL 

backscatter and depolarization measurements taken during the same time period. It is 

known that a neural network can be trained to implement an arbitrary multidimensional 

functional relationship (e.g., Funahashi 1989) by application of an iterative error 

minimization technique, such as the backpropagation of errors algorithm (Rumelhart et 

al., 1986), to a set of representative input and output data. Fig. 4 shows a scatter plot of 

the actual measured lidar CDR versus the measured lidar backscatter for most of the 

MPACE field study. We used a small fraction of these HSRL measurements to train the 

neural network via backpropagation. The boxed area in Fig.4 encloses lidar detections of 

supercooled liquid (clear separation from solid particle detections). After training, to 

generate a radar-based supercooled liquid binary mask from new Doppler spectra, the 

neural network predicts associated values of lidar CDR and backscatter, and a 

determination is made whether these predicted values fall within this same boxed area.  

 

The training dataset was selected from the first seven days of October 2004. The MMCR 



measurements have a vertical resolution of 45 m and temporal resolution of 5 sec. Every 

seven hours of observations, one hour of MMCR measurements and their corresponding 

nearest lidar measurements in time and height are selected (Fig. 5). We decided to select 

training data every seventh hour (the choice of seven is arbitrary) so that the majority of 

time is not sampled, allowing abundant intervals for testing the predictor's ability to 

generalize. The selected lidar measurements are divided into two equal-sized groups. One 

group serves exclusively as the training data source and the other for validation.  During 

each training cycle, the neural network output is evaluated over the validation dataset. 

Iterations of the network for which an overall improvement occurs are saved. When there 

is no further improvement after 20,000 cycles, the process terminates. 

  

4. RESULTS 

 

To validate the performance of our classifier, we first show in detail several retrieved 

time-height liquid water masks that have good agreement with the independently 

measured ceilometer cloud base. Next, we show that good agreement between the base of 

the retrieved liquid mask and the ceilometer cloud base holds for the full month of 

October 2004. Finally, we demonstrate excellent long-term correlation between time-

series of our retrieved liquid mask's column thickness and the integrated liquid water path 

measured independently by a collocated microwave radiometer. We contrast this with a 

poor correlation between the total column thickness of significant radar detections and 

the same time-series of MWR liquid water path. In addition, we demonstrate from 

soundings that the measured thermodynamic conditions coinciding in time-height with 

our liquid mask are consistent with mixed-phase conditions. 



 

4.1 Time-Height Liquid Mask Comparisons 

 

The neural network output (prediction of supercooled liquid location via prediction of 

lidar backscatter and lidar circular depolarization ratio) derived using MMCR Doppler 

spectra is evaluated with data collected during the ARM MPACE campaign. The first 

examined case is a deep cloud layer observed on October 7, 2004. Fig. 6 shows the time-

height mapping of the MMCR Doppler moments for a one-hour period (10:00-11:00 

UTC).  This hour is not included in the training dataset. The observed MMCR 

reflectivities range from -15 to +15 dBZ with distinct streaks of high radar reflectivity 

originating around 2 km altitude accompanied by increased Doppler velocities. In 

contrast, the highest Doppler spectrum Width values are observed in the layer between 2 

and 2.5 km. Interpolated temperature measurements from balloon soundings indicate a 

near surface temperature of -5 °C and -20 °C near the cloud top. Thus, if liquid is present 

in the radar echoes, it will be supercooled. It is apparent that from the radar moments it is 

difficult to infer the cloud phase, although the high radar reflectivity values suggest the 

presence of ice almost everywhere. The large spectrum width values around 2-2.5 km 

partially indicate the presence of a particle population with a broad range of velocities 

and hint at the coexistence of liquid and ice particles; however this is not a firm criterion 

for the detection of supercooled liquid since localized turbulence can also affect the 

spectrum width.   

 

A different view of the same cloud is provided by the lidar (Fig. 7). The band of low 

Circular Depolarization Ratio (CDR) values near the top of the lidar returns is a strong 



indication of the presence of spherical particles in the sampled volume. The lidar 

backscatter measurements for the same period also support this conclusion (Fig. 7b). A 

band of high backscatter cross-section is present between 1.5 and 2 kilometers, indicating 

the presence of liquid water that fully attenuates the lidar signal.  Four representative 

spectra from the collocated MMCR are also shown in Fig. 7c corresponding to the 

indicated times and altitudes of occurrence of Fig. 7b. It is apparent that all four spectra 

are similar and inseparable on the basis of Doppler moments alone. However, the three 

spectra coinciding with the band of high lidar backscatter have a subtle skewness or 

bimodality at their principle peaks' left edge, consistent with the presence of liquid, 

whereas the fourth (S2) does not.  

 

Using the collocated MMCR Doppler spectra collected during the same period as input to 

our trained neural network, we predicted the lidar backscatter and CDR, and from these 

the region containing supercooled liquid (Fig. 8). While our ultimate objective is to 

retrieve the location of supercooled liquid (Fig. 8c), we also display the predicted lidar 

backscatter and depolarization. The predicted lidar measurements are directly comparable 

with the actual lidar observations. The cloud ceiling measured independently (not used as 

input to the retrieval) by a collocated ceilometer is over-plotted in black. There is 

excellent morphological consistency between the predicted (Fig. 7a,b) and observed (Fig. 

8a,b) lidar backscatter and CDR. The lidar measurements in Fig. 7 do not extend beyond 

the layer of high backscatter due to extinction of the lidar beam in optically thick cloud; 

however, more cloud is present up to about four kilometers (Fig. 6). The predicted area of 

supercooled liquid (Fig. 8c) suggests the presence of a liquid cloud base around 1.8 

kilometers and inspection shows the reflectivity at this altitude to be in the range of 0 dB. 



Small liquid droplets alone cannot support such high reflectivity values. Furthermore, the 

MMCR-based detection of supercooled liquid suggests the presence of pockets of liquid 

near the cloud top (around 4 km height). Lidar measurements are not available to provide 

verification for the presence of the liquid layer near the cloud top due to complete lidar 

signal extinction at the first liquid layer. However, the nearest available balloon sounding 

to the selected period (taken at 11 UTC) indicates the presence of a thin layer with high 

relative humidity (above 90%) near the cloud top (Fig 9a). Figure 9b shows the 

temperature profile from the same sounding. 

 

Another one-hour period that demonstrates the potential to detect cloud liquid and predict 

lidar observables using MMCR Doppler spectra is shown in Figs. 10 and 11. This case is 

from a multi-liquid layer period with precipitating ice (Fig. 10). The observed lidar CDR 

and backscatter measurements (Fig. 10a,b) suggest the presence of two liquid layers, but 

with the upper layer substantially occluded by extinction in the lower layer when 

compared with the MMCR reflectivity view of the same period (Fig. 10c). The predicted 

lidar backscatter, CDR and area of supercooled liquid within the range of the radar's 

operational sensitivity are shown in Fig. 11. Once again, there is remarkable consistency 

between the observed and predicted lidar backscatter, CDR and location of the 

supercooled liquid. The independently measured ceilometer cloud base is also shown in 

Fig. 11. Once again, the sharp liquid base predicted from the neural network coincides 

very well with the ceilometer cloud base and the high backscatter values measured by the 

lidar.  This figure fills out the picture of two liquid layers, and even suggests a third layer 

of mixed-phase conditions (Fig. 11c) at 1.2 kilometers which is also briefly hinted in the 

actual measurements of figure 10a at 6.475 UTC. 



 

4.2 Comparisons with Liquid Water Path and Cloud Base Detections 

 

Additional validation of the supercooled liquid detection algorithm is provided through a 

comparison of our retrieved lowest supercooled liquid layer base and the ceilometer 

cloud base (Fig. 12a) over the entire month of October 2004.  Both time series are 

smoothed by a box-car window filter of 4 hours duration. The result shows good 

agreement over this longer time frame, even though training data was only taken from the 

first week. That our retrieval technique detects not only the presence of supercooled 

liquid in the column but also accurately locates the base of the first liquid layer is 

indicative of its sensitivity to detecting small amounts of liquid, since the smallest 

amounts of liquid are expected at the cloud base level. For comparison, Fig. 12b shows 

the base of significant radar hydrometeor detections (often the lowest height of the 

precipitating ice) over the same time period in black, and the ceilometer cloud base in 

gray.  These comparisons clearly demonstrate the method’s ability to identify liquid 

water layers embedded in ice. 

 

The ARM suite of instruments operating at NSA during MPACE included a zenith 

pointing microwave radiometer providing zenith measurements of integrated liquid water 

path via its 31.4 GHz channel. The gray curve of Figure 12c shows the recorded liquid 

water path measured by this instrument over the month of October 2004. The overlaid 

black curve shows the column thickness of our radar-retrieved liquid mask for the same 

time period. Liquid mask column thickness and LWP are both smoothed by a box-car 

window filter of 4 hours duration. The correlation between these two time series is 0.68.  



This correlation is expected to be somewhat less than unity due to the natural variability 

of liquid as a function of height (i.e., differences in liquid water content).  For 

comparison, we generated a time series of the total column thickness of all significant 

hydrometeor radar detections (liquid and ice), and found its correlation with the MWR 

liquid water path over the same time period to be only 0.079. We can infer then that the 

liquid-containing subset of radar returns has been substantially identified within the full 

set of radar returns over the month-long period. The MWR did not play any role in the 

training of our algorithm, and thus provides an entirely independent source of validation. 

 

Forty percent of our October 2004 radar-retrieved liquid water mask coincides with radar 

returns having a reflectivity of at least -15 dBZ (Fig. 13a). When we limit our mask to 

this higher reflectivity subset, its column thickness correlation with MWR liquid water 

path actually increases to 0.75. This suggests that mixed-phase clouds dominate the total 

liquid water present during October 2004 at NSA.  For the column thickness of all 

hydrometeor radar detections of at least -15 dBZ, the correlation with the MWR liquid 

water path is 0.2. Once again, we can infer the ability of the technique to locate the liquid 

containing returns within the higher reflectivity (> -15 dBZ) subset.  

 

Figures 13b and c show temperature and relative humidity distributions of interpolated 

sounding measurements for all time-height pixels identified to contain liquid water that 

are within one hour of a radiosonde launch during October 2004. The Doppler spectra-

based detections of supercooled liquid are found to be within the -30 to 0 °C range. This 

finding agrees with prevailing theories for the existence of supercooled liquid at 

temperature ranges of -40 to 0 °C. Another interesting finding is that the bulk of our 



supercooled liquid detections occur in areas with relative humidity higher than 90%. 

Although this is not a surprise, it suggests that future supercooled liquid detection 

schemes from ground sensors should include the high temporal and spatial resolution 

sounding information provided at the ARM sites.  

 

5. SUMMARY 

 

The life cycles and radiative properties of clouds are highly sensitive to the phase of their 

hydrometeors (i.e., liquid or ice). Cloud radars are among the premier instruments used in 

atmospheric research for the detection of the vertical structure of clouds. Conditional 

analysis of cloud radar Doppler moments can provide limited information for predicting 

cloud phase; however, the information is inconclusive in a large fraction of mixed-phase 

conditions. This limitation comes from dependency of the radar backscatter on the sixth 

power of the hydrometeor diameter resulting in radar return signals being dominated by 

the presence of large ice crystals and the masking of the supercooled liquid droplet 

returns. 

 

Synergistic profiling measurements from cloud radars and lidars have been proposed for 

the identification of cloud phase based on differences in their scattering mechanisms 

(e.g., Shupe, 2007). High lidar backscatter and near-zero lidar depolarization 

measurements have been previously found to correlate very well with the presence of 

liquid layers in clouds. However, such measurements are not widely available and the 

detection of supercooled liquid is possible only in areas where a lidar signal is available 

(subject to liquid attenuation).  



 

The proposed technique overcomes this fundamental limitation of cloud radars and 

suggests new venues for the retrieval of the location of supercooled liquid using 

vertically pointing cloud radars. The proposed technique hinges on the idea that careful 

sampling of clouds by vertically profiling cloud radars (Kollias et al., 2007a) can reduce 

the detrimental effects of dynamics on the Doppler spectrum morphology. The ARM 

MMCR’s are an example of cloud radars where such sampling is implemented and the 

recorded Doppler spectra contain microphysical signatures. In this study, we used a 

wavelet operator on the recorded Doppler spectra in order to identify subtle differences in 

the Doppler spectrum morphologies that can lead to the detection of the presence of more 

than one water phase in the radar resolution volume.   

 

Using the MMCR Doppler spectra, we detected the area of supercooled liquid in both 

single and multi-layer cloud scenes.  The retrieved area of the supercooled liquid nicely 

agrees with the prediction of supercooled liquid from the lidar measurements. A month-

long time series of predicted liquid column thickness shows high correlation with 

integrated liquid water path independently measured by a collocated microwave 

radiometer. The ability of the MMCR to penetrate multi-layer clouds enables the 

prediction of lidar observables in areas where lidar measurements are not available due to 

signal extinction.  This extends the ability of ground-based systems to retrieve cloud 

phase in areas with no lidar measurements and without the use of assumptions related to 

cloud morphology and spatial distribution of cloud phase. 

 

It is not our intent to suggest that the MMCR could replace the lidar observations. The 



suggested technique provides only information about the presence of supercooled liquid 

in clouds, while lidar measurements help to extract quantitative microphysical 

information about the cloud droplets and aerosols that are not possible with a cloud radar. 

Radar sensitivity is another factor that limits the application of the technique. During the 

ARM MPACE experiment, some physically thin and low-liquid water layers were 

undetected by the NSA MMCR. Thus, our radar-based technique is applicable only to 

areas where the liquid radar return is above the detection threshold of the cloud radar. 

Plans include the application of the technique to all the ARM sites using appropriate 

training data sets (e.g., micro-pulse and Raman lidar measurements). 

 

The application of wavelets or other operators to the recorded Doppler spectra can lead to 

new ways of analyzing radar Doppler spectra. Already, the ARM program is producing 

higher moments of the Doppler spectra (such as skewness and kurtosis) and identifying 

the presence of spectral multi-modalities. In many cases, these parameters all exhibit 

good coherence in time and space, and open new venues for process studies in clouds and 

precipitation using radars. 
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7. FIGURE CAPTIONS 

 

1. Examples of MMCR Doppler spectra generated from a) two different phase mode 

particle size distributions with enough size separation to create a bimodal Doppler 

spectrum and b) two different phase particle size distributions that do not have sufficient 

velocity difference to generate a clear bimodal Doppler spectrum separated by noise bins.  

 

 2. Synthetic MMCR Doppler spectra generated by a) a single Gaussian distribution, b)  

the superposition of two equal magnitude Gaussian distributions, c) the superposition of 

two unequal magnitude Gaussian distributions, and d) through f) their corresponding 

continuous wavelet transforms.  

 

3. a) The Marr wavelet at each scale used, b) example of an observed mixed-phase 

Doppler spectrum,  and c) the corresponding wavelet transform of the Doppler spectrum 

at each scale. 

 
4. Measured lidar backscatter cross section versus circular depolarization ratio for most 

of October 2004 with the region corresponding to liquid detection outlined by a gray box. 

 

5. Illustration of the selection scheme for choosing training data. Training data is sparsely 

sampled from one-hour time windows every seven hours. The population of training 

samples is distributed evenly over height. Thus every range gate, g1, g2, g3...gn 

contributes roughly the same number of samples. 

 

6. Time-height mapping of MMCR a) radar reflectivity with radiosonde temperature 



profile, b) mean Doppler velocity, and c) Doppler spectrum width for a one-hour period 

(10:00-11:00 UTC) on October 7, 2004. 

 

7. Time-height mapping of a) the observed lidar circular depolarization ratio (CDR) for 

one-hour period (10:00-11:00 UTC) on October 7, b) the observed lidar backscatter for 

the same period and c) examples of four MMCR Doppler spectra collected during the 

same period corresponding to the indicated time-height locations in (b). 

 

8. Time-height mapping of a) the predicted lidar CDR using the corresponding MMCR 

Doppler spectra for the period 10:00-11:00 UTC on October 7, 2004, b) the predicted 

lidar backscatter for the same period, with the ceilometer cloud base (black dots) plotted 

for reference, and c) the predicted area of supercooled liquid detections. 

 

9. Soundings of a) relative humidity and b) temperature at 11 UTC on October 7, 2004. 

 

10. Fig. 10. Time-height mapping of a) the observed lidar circular depolarization ratio 

(CDR) for one-hour period (06:00-07:00 UTC) on October 7, b) the observed lidar 

backscatter for the same period and c) the observed MMCR radar reflectivity of the same 

period, with radiosonde temperature profile. This is a multi-layer cloud arctic case. 

 

11. Time-height mapping of a) the predicted lidar CDR using the corresponding MMCR 

Doppler spectra for the period 06:00-07:00 UTC on October 7, 2004, b) the predicted 

lidar backscatter for the same period, with the ceilometer cloud base (black dots) plotted 

for reference, and c) the predicted area of supercooled liquid detections.  



 

12. Time series of a) ceilometer measured cloud base (gray) and the base of radar 

retrieved liquid (black), b) ceilometer measured cloud base (gray) and the base of 

significant radar detections (black), and c) MWR measured liquid water path (gray) and 

column thickness of the radar retrieved liquid mask (black), in range gates, for October 

2004. MWR LWP has a 0.68 correlation with retrieved liquid thickness. 

 

13. a) Reflectivity, b) time-interpolated temperature, and c) time-interpolated relative 

humidity distributions of the October 2004 radar retrieved liquid mask pixels occuring 

within 1 hour of a radiosonde launch. 

 

 



 
 
 Fig. 1 Examples of MMCR Doppler spectra generated from a) two different phase mode 

particle size distributions with enough size separation to create a bimodal Doppler 

spectrum and b) two different phase particle size distributions that do not have sufficient 

velocity difference to generate a clear bimodal Doppler spectrum separated by noise bins. 

 



 
 
 

 

Fig. 2. Synthetic MMCR Doppler spectra generated by a) a single Gaussian distribution, 

b) the superposition of two equal magnitude Gaussian distributions, c) the superposition 

of two unequal magnitude Gaussian distributions, and d) through f) their corresponding 

continuous wavelet transforms. 

  
 
 



 

 
Fig. 3. a) The Marr wavelet at each scale used, b) example of an observed mixed-phase 

Doppler spectrum, and c) the corresponding wavelet transform of the Doppler spectrum 

at each scale. 

 
 



 

 
 
 

Fig. 4. Measured lidar backscatter cross section versus circular depolarization ratio for 

most of October 2004 with the region corresponding to liquid detection outlined by a 

gray box. 

 



 
 
 

Fig. 5. Illustration of the selection scheme for choosing training data. Training data is 

sparsely sampled from one-hour time windows every seven hours. The population of 

training samples is distributed evenly over height. Thus every range gate, g1, g2, g3...gn 

contributes roughly the same number of samples. 

 



 

Fig. 6. Time-height mapping of MMCR a) radar reflectivity with radiosonde temperature 

profile, b) mean Doppler velocity, and c) Doppler spectrum width for a one-hour period 

(10:00-11:00 UTC) on October 7, 2004. 

 



 
Fig. 7. Time-height mapping of a) the observed lidar circular depolarization ratio (CDR) 

for one-hour period (10:00-11:00 UTC) on October 7, b) the observed lidar backscatter 

for the same period and c) examples of four MMCR Doppler spectra collected during the 

same period corresponding to the indicated time-height locations in (b).



 
Fig. 8. Time-height mapping of a) the predicted lidar CDR using the corresponding 

MMCR Doppler spectra for the period 10:00-11:00 UTC on October 7, 2004, b) the 

predicted lidar backscatter for the same period, with the ceilometer cloud base (black 

dots) plotted for reference, and c) the predicted area of supercooled liquid detections.



 

 

Fig. 9. Soundings of a) relative humidity and b) temperature at 11 UTC on October 7, 

2004. 

 



 
Fig. 10. Time-height mapping of a) the observed lidar circular depolarization ratio (CDR) 

for one-hour period (06:00-07:00 UTC) on October 7, b) the observed lidar backscatter 

for the same period and c) the observed MMCR radar reflectivity of the same period, 

with radiosonde temperature profile. This is a multi-layer cloud arctic case.



 
Fig. 11. Time-height mapping of a) the predicted lidar CDR using the corresponding 

MMCR Doppler spectra for the period 06:00-07:00 UTC on October 7, 2004, b) the 

predicted lidar backscatter for the same period, with the ceilometer cloud base (black 

dots) plotted for reference, and c) the predicted area of supercooled liquid detections.  

 



 

Fig. 12. Time series of a) ceilometer measured cloud base (gray) and the base of radar 

retrieved liquid (black), b) ceilometer measured cloud base (gray) and the base of 

significant radar detections (black), and c) MWR measured liquid water path (gray) and 

column thickness of the radar retrieved liquid mask (black), in range gates, for October 

2004. MWR LWP has a 0.68 correlation with retrieved liquid thickness.



 

 

Fig. 13 a) Reflectivity, b) time-interpolated temperature, and c) time-interpolated relative 

humidity distributions of the October 2004 radar retrieved liquid mask pixels occuring 

within 1 hour of a radiosonde launch. 

 

 




